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Degree Assortativity in Collaboration Networks and Invention Performance 

Abstract: We investigate the implications of the degree assortativity of intra-firm networks for 

firms’ innovation performance. We argue that prevalent patterns of collaborative relationships 

between organizational members can lead to variations in the levels of degree assortativity in 

intra-firm networks, ranging from disassortative structures (highly central members connect with 

peripheral members) to assortative ones (highly central members connect with other highly 

central members and vice versa). These patterns influence knowledge access and resource 

mobilization pathways and are thus associated with various firm-level invention outcomes. Using 

coarsened exact matching methodology and controlling for other characteristics of the intra-firm 

network structures, we find that assortative structures in the pharmaceutical industry are 

associated with larger invention output, but inventions originating from assortative structures 

have lower average novelty and impact.  

Managerial Summary: A central challenge in knowledge-based industries is the design of 

collaborative teams to increase innovative output. In this paper, we show that firms in the 

pharmaceutical industry vary in the extent to which central inventors within a firm collaborate 

with peripheral inventors. Further, the ideal composition varies based on the desired innovative 

output: Firms with frequent collaborations between central inventors have higher inventive 

productivity, while firms with higher mixing between central and peripheral inventors generate 

inventions that are on average more novel and have higher impact. Results have implications for 

organizational design toward desired innovative outcomes, as well as management of strategic 

human capital.  

keywords: Local search; distant search; assortativity; innovation; invention; intra-firm network; 
pharmaceutical industry 
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INTRODUCTION  

Researchers have long been interested in understanding the social structure of 

organizational innovation (Allen & Cohen, 1969; Tichy, Tushman, & Fombrun, 1979; Tushman, 

1977). Based on the important role that collaboration networks play in the transmission of 

knowledge (Hansen, 2002; Phelps, Heidl, & Wadhwa, 2012), a recent body of literature reveals 

how the overall patterns of collaboration within a firm are associated with innovation (e.g., Fang, 

Lee & Schilling, 2010; Guler & Nerkar; 2012; Lazer & Friedman, 2007; Mason & Watts, 2012). 

Given variations in firm-level returns to innovation efforts (e.g., Knott, 2008), these studies 

help uncover the sources of heterogeneous innovation capabilities (Helfat, 2000). 

While this literature has made important strides in explaining the relationship between 

intra-firm collaboration networks and innovation, it also has some limitations. For instance, 

studies have mainly focused on various structural characteristics of intra-firm networks such as 

centralization or connectedness but largely ignored the tie formation mechanisms prevalent in 

those networks, or the question of who collaborates with whom. At the same time, the literature 

on collaborative teams suggests that tie formation mechanisms matter for innovation outcomes. 

For instance, collaborations between individuals possessing similar types of knowledge or 

resources may generate different outcomes than those with access to diverse knowledge or 

resources (e.g., Reagans & Zuckerman, 2001; Taylor & Greve, 2006; Hsu et al., 2021). As a 

result, firms that look similar in terms of the typical structural characteristics may not achieve the 

same innovation outcomes because the prevalent tie formation mechanisms may affect the paths 

of knowledge recombination and resource mobilization within the firm.  

This study aims to address this issue by highlighting the assortativity of intra-firm 

networks as an important but often overlooked correlate of firm innovation (Ahuja, Soda, & 

Zaheer, 2012). The assortativity of an intra-firm network captures the level of homophily 
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prevalent in that network. Homophily is the individual preference to connect with similar others 

and is widely accepted as a general law of tie formation (Lazarsfeld & Merton, 1954; 

McPherson, Smith-Lovin, & Cook, 2001). Its implications for knowledge access and job 

performance are well studied in the literature on individuals and dyads (e.g., Ertug et al., 2018; 

Hegde & Tumlinson, 2014; Ibarra, 1992; Hansen, 1999). What is novel in this study is the notion 

that intra-firm networks may vary in the extent to which they are composed of collaborations 

among similar individuals and that these variations may be correlated with persistent firm-level 

differences in innovation performance.  

More specifically, the research question in this study is on how degree assortativity in 

intra-firm network structures influences innovation outcomes. In networks with high degree 

assortativity, inventors at similar degree (centrality) ranks are more likely to connect with one 

another than with those at different ranks (Ahuja et al., 2012; Newman, 2002). Our thesis is that 

this is a correlate of innovation performance at the firm level because it captures systematic 

differences in how knowledge is combined and resources are mobilized for recombinant 

innovation. Our focus on degree assortativity breaks from prior work focusing solely on intra-

firm knowledge flows (e.g., Aggarwal, Hsu & Wu, 2020; Fang et al., 2010; Phelps et al., 2012; 

Hansen, 2002) in that it simultaneously captures issues pertaining to knowledge access as well as 

mobilization of organizational resources to generate and develop ideas. In this sense, degree 

assortativity highlights the role of collaborative ties as both pipes that transfer knowledge as well 

as prisms that reflect the social standing of inventors in resource mobilization and idea selection 

(Podolny, 2001). Degree assortativity thus potentially influences both the search and selection 

processes in inventive activity (Nelson & Winter, 1982; Zollo & Winter, 2002; Simon, 1955; 

Knudsen & Levinthal, 2007). Indeed, our empirical examination of collaboration structures in 
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the pharmaceutical industry suggests meaningful correlations between degree assortativity and 

invention performance after controlling for other structural characteristics of internal networks as 

well as the overall distribution of knowledge within a firm.  

A second limitation of the current work on intra-firm networks and innovation is that 

there exists a wide variation in the conceptualization and measurement of innovative outcomes. 

Some of these studies focus on collaborative learning and problem-solving (e.g., Lazer & 

Friedman, 2007; Mason & Watts, 2012), others highlight search scope (e.g., Paruchuri & Awate, 

2017) or recombinant innovation (Carnabuci & Operti, 2013). Yet others examine the 

commercial viability of inventions as an outcome (Guler & Nerkar, 2012). While these studies 

broadly point to similar mechanisms, the subtle differences in their emphases might obscure an 

understanding of the pathways between collaboration structures and innovation performance.  

In this study, we attempt to disentangle the relationship between degree assortativity and 

various dimensions of invention outcomes. We argue that degree assortativity will be positively 

correlated with the quantity of inventions generated by a firm’s inventors, but negatively 

correlated with the novelty and impact of the resultant inventions. This is because assortative 

networks enjoy efficiencies in knowledge sharing within same-rank collaborations but miss out 

on complementarities that mixed-rank collaborations possess in knowledge access as well as 

resource mobilization. Given the uncertainty and complexity inherent in the process of invention, 

our focus on multiple inventive outcomes helps uncover the heterogeneous impact of intra-firm 

networks on various inventive outcomes and the tradeoffs involved. By doing so, this study 

contributes to a recent stream of research that has called for more clarity in the definitions of 

inventive outcomes as well as their relationships (Kaplan & Vakili, 2015) and joins recent work 
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that acknowledges the importance of studying multiple outcomes in the context of inventive 

activity (e.g., Lazzarini et al., 2020).  

INTRA-FIRM COLLABORATION AND INNOVATION 

In discussing innovation, we keep with prior literature and distinguish between invention, 

which is the development of a new idea, and innovation, which refers to the commercialization 

of an invention (Ahuja & Lampert, 2001; Schumpeter, 1934). While not all inventions may result 

in commercial success, invention is an essential step for successful innovation. We build on the 

recombinant perspective, which represents invention as a process of combining new or existing 

knowledge components to generate a solution to a problem (Hargadon, 2003; Schumpeter, 

1939). Given the limits to the cognitive capacity and knowledge of any individual inventor, 

collaboration is critical for inventors searching for useful combinations (Fleming, 2001; 

Sorenson, Rivkin, & Fleming, 2006).  

Researchers have often highlighted invention quantity, impact, and novelty as desirable 

outcomes of the invention process (e.g., Ahuja & Lampert, 2001; Kaplan & Vakili, 2015; 

Trajtenberg, 1990). Invention quantity refers to the number of inventions produced, and impact 

refers to the influence of those inventions on future work. We define novelty as the extent to 

which inventions include knowledge components that are unfamiliar to the inventors in a firm, 

regardless of whether they have been in existence elsewhere (Ahuja & Lampert, 2001). While all 

these objectives are important, they are often at odds with one another. Exploratory search that 

leads to novel inventions is risky and often leads to failure, potentially decreasing invention 

quantity in the short run. Exploitation, on the other hand, leads to higher quantity but often 

incremental outcomes (March, 1991; Levinthal & March, 1993). In building our theory about 

degree assortativity and firm innovation, we consider these classic tradeoffs.  
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Collaborative Network Structure and Invention Outcomes 

There are two key mechanisms through which intra-firm networks of collaborations 

between inventors may influence invention outcomes: knowledge access and resource 

mobilization. Scientific invention requires knowledge exchange among inventors within the firm, 

as well as mobilization of organizational resources such as funding, support, and legitimacy 

(Perry-Smith & Mannucci, 2017). During search and idea generation, access to diverse sources 

of knowledge is critical, and patterns of collaboration influence which knowledge components 

get shared and recombined (Allen & Cohen, 1969; Perry-Smith & Mannucci, 2017). The second 

key mechanism, resource mobilization, is necessary in the selection process, in which some ideas 

are developed into concrete inventions while others are abandoned (Nelson & Winter, 1982; 

Simon, 1955; Knudsen & Levinthal, 2007). While organizational resources are essential during 

implementation of innovations (Perry-Smith & Mannucci, 2017), they are also important in the 

early phases of knowledge production, where uncertainty is high, resources are limited, and ideas 

are under selection pressure (e.g., Girotra, Terwiesch, & Ulrich, 2007; Simonton, 1999). 

Networks play an important role in gathering organizational resources such as funding, inventor 

team and gatekeeper support, and are especially important for novel, untraditional ideas that may 

not otherwise survive the typical processes of selection (e.g., Ibarra, 1993; Kanter, 1983). 

Prior work at the whole-network level examines the relationship between firm-level 

structures emanating from collaborations and collective innovation, mainly with a focus on 

knowledge access. In a recent review, Ahuja et al. (2012) catalog whole-network structure 

dimensions as degree distribution (centralization), connectivity, clustering, density, and degree 

assortativity. Past studies of intra-firm networks and innovation have often focused on the first 

four. This literature suggests a positive link between connectivity and effective integration of 
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internal and external knowledge for innovation (e.g., Carnabuci & Operti, 2013; Grigoriou & 

Rothaermel, 2017; Moreira, Markus, & Laursen, 2018). At the same time, extreme connectivity 

may hamper exploration by inhibiting ‘slow learning’ and leading to premature convergence to 

an inferior solution (Fang et al., 2010; Lazer & Friedman, 2007; March, 1991) as well as impose 

costs of coordination between research initiatives (Guler & Nerkar 2012). Similarly, 

centralization of the intra-firm knowledge network may have contrasting effects on knowledge 

sharing and innovation. Centralized information exchange may facilitate a coordinated response 

to external change by ensuring that members of an organization have access to similar 

knowledge (Argote, Aven, & Kush, 2018; Shore, Bernstein, & Jang, 2020), but the resultant 

knowledge uniformity also inhibits the generation of diverse ideas (Schilling & Fang, 2014).  

Examining degree assortativity allows us to look beyond these previously examined 

dimensions by incorporating tie formation patterns in intra-firm networks. Interestingly, this 

aspect of intra-firm networks has received relatively less attention than other structural 

characteristics (Ahuja et al., 2012). In addition, while separate streams of work have pointed out 

the importance of network ties for innovation development and implementation (e.g., Perry-

Smith & Mannucci, 2017; Nerkar & Paruchuri, 2005), the intra-firm network literature has put 

larger emphasis on the role of collaboration structures in knowledge recombination but less on 

resource mobilization. Below, we describe degree assortativity, discuss its relationship with other 

network characteristics, and explain its association with various invention outcomes. 

Degree Assortativity in Intra-firm Networks 

Degree assortativity refers to the tendency of nodes to attach to those with similar degree 

centrality ranks in a network (Ahuja et al., 2012; Newman, 2003). In an intra-firm network with 

high degree assortativity, central (peripheral) actors are more likely to establish collaborations 
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with other central (peripheral) actors.1 At the whole-network level, degree assortativity implies 

tie formation based on similar centrality ranks, but it is distinct from the centrality of individual 

members or the centralization of an intra-firm network. While centralization refers to degree 

distribution, or the extent to which some members of a network occupy more central positions 

than others, degree assortativity refers to degree association, or the extent to which members in 

central positions are likely to connect with one another (as opposed to those in lower ranks). Two 

networks with the same level of centralization or density may have different levels of degree 

assortativity depending on the tie formation mechanism adopted by the members. Figures 1a and 

1b illustrate this point by exhibiting two stylized networks which are similar along typical 

network dimensions but differ considerably in their assortative mixing. The difference in the 

assortativity of otherwise similar networks are important for inventions because a tie between 

two central members is likely to comprise different levels of knowledge and resource exchange 

from one between a central and peripheral member.  

---------------------------------- Insert Figures 1a and 1b here --------------------------------- 
 

How do intra-firm networks come to be more or less assortative? On the one hand, 

network structures may emerge from the choices of individual actors to form, maintain, or sever 

collaborative ties (Ahuja et al., 2012; Baum, Shipilov, & Rowley, 2003; Coleman, 1988). The tie 

formation mechanism adopted by most of the inventors in the intra-firm network influences the 

level of degree assortativity. The tie formation mechanism underlying assortative structures is 

degree homophily, whereas the dominant tie formation logic in disassortative networks is 

complementarity (heterophily) (Ahuja et al., 2012). On the other hand, homophily may be 

induced by the structure of opportunities for interaction (McPherson et al., 2001). Individuals 

 
1 In the rest of the paper, when we use the terms “assortative” or “assortativity”, we only refer to degree 
assortativity. 
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who are part of the same organizational unit, geography, or activities tend to have more 

homophilous ties than others (Kleinbaum, Stuart, & Tushman, 2013; McPherson & Smith-Lovin, 

1987). This suggests that managers may have some control over the level of assortativity through 

organization design. It is plausible that both processes coevolve (Baum et al., 2003). For 

instance, initial dyadic preferences and organization design elements that favor homophily may 

become entrenched through inertia in subsequent collaboration choices and get coded into the 

norms and values of a firm (Li & Rowley, 2002), influencing the formation of subsequent ties 

through a self-reinforcing dynamic.  

Reconciling Degree Assortativity, Individual Centrality, and Dyadic Homophily  

The relationship between degree assortativity and invention performance may reflect the 

mechanisms of knowledge access and resource mobilization at the nodal, dyadic, and 

organizational levels (Table 1). At the nodal level, assortativity reflects variations in the 

knowledge and resources available to individual inventors at various degrees of centrality. 

Central network positions provide inventors with greater access to the knowledge in the intra-

firm network (Hansen, 2002; Nerkar & Paruchuri, 2005). As a result, central inventors and units 

tend to be more innovative (e.g., Tsai, 2001; Maoret, Tortoriello, & Iubatti, 2020). Moreover, 

central inventors often enjoy high status (Nerkar & Paruchuri, 2005; Paruchuri, 2010) and higher 

access to organizational resources necessary for development of ideas (Ibarra, 1993; Merton, 

1968; Perry-Smith & Mannucci, 2017; Podolny, 1993). On the flipside, the knowledge possessed 

by central inventors may heavily reflect the prevailing norms and assumptions of the firm (e.g., 

Arts & Fleming, 2018; Dahlander & Frederiksen, 2012; Jeppesen & Lakhani, 2010). Central 

inventors may therefore miss or undervalue the diverse and unique pockets of knowledge that 

exist at the fringes of a network (Cummings & Cross, 2003; Everett & Borgatti, 1999; McEvily, 



 

 10 
 

Soda, & Tortoriello, 2014). In sum, one may expect central inventors to be highly productive but 

mainly engaged in path-dependent, local search (Maoret, et al. 2020). Conversely, peripheral 

inventors may possess knowledge and perspectives that are new to the firm but experience lower 

productivity, especially due to disadvantages in resource mobilization (Cattani & Ferriani, 2008). 

At the dyadic level, an assortative network reflects structural and status-based homophily 

in dyads and teams (Ahuja et al., 2012; McPherson et al., 2001). Similarity among collaborators 

leads to higher trust between collaborators, a common cognitive frame, and motivation to share 

knowledge (Aggarwal et al., 2020; Phelps et al., 2012; Reagans, Zuckerman & McEvily, 2004; 

Thomas-Hunt, Ogden, & Neale, 2003). The downside of such connections is that they limit 

access to complementary knowledge and resources that dissimilar others might have. In all, 

structural homophily may increase the productivity of inventor teams but decrease their ability to 

explore diverse sources of knowledge in inventions. In addition, a distinct impact of structural or 

status-based homophily is to shape the patterns of interaction. For instance, status asymmetry 

between collaborators may influence the extent to which they are willing and able to share 

knowledge (Bunderson & Reagans, 2011; Tzabbar & Vestal, 2015).  

At the organizational level, assortative mixing often leads to core-periphery structures 

with a core of densely connected central inventors and a periphery consisting of inventors with 

low centrality (Ahuja et al., 2012; Borgatti & Everett, 2000). Highly assortative networks are 

fragmented and feature few connections between the core and the periphery, leading to distinct 

clusters. The fragmentation in assortative structures suggests rich information and resource flows 

within each cluster of inventors but limited flows between them (Fang et al., 2010). In the next 

section, we explore the implications of these observations for invention performance.  
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Degree Assortativity and Quantity of Inventions Produced 

The extent of degree assortativity may influence the ease with which inventors share knowledge 

and mobilize resources through the composition of inventor teams. The similarity of inventors in 

teams and dyads in an assortative network facilitates communication and resource sharing, 

increasing efficiency and productivity in the invention process. In contrast, mixed-rank 

collaborations often found in networks with lower assortativity may experience lower output due 

to challenges in establishing trust, creating a common cognitive frame and sharing knowledge 

(Aggarwal et al. 2020; Reagans, et al., 2004; Shipilov, Li, & Greve, 2011). 

Inventor team member similarity is not the only reason to expect differences in the 

quantity of inventions in collaboration networks with varying levels of degree assortativity. The 

nodal ranks of the inventors in each team also matter. To simplify, consider a stylized network of 

dyadic ties only. A highly assortative network has more collaborations between central inventors 

(C-C) and between peripheral inventors (P-P) while less assortative networks have more mixed-

rank (C-P) collaborations. Among these three collaboration types, C-C are likely to be especially 

prolific. Prior work repeatedly shows that central inventors and teams are more productive, and 

that a large proportion of inventive output is due to a few ‘star’ inventors with high social capital 

(e.g. Maoret et al., 2020; Tzabbar & Kehoe, 2014; Zucker, Darby & Armstrong, 2002). The 

disproportionate impact of C-C teams on invention output likely compensates for the low 

productivity of P-P collaborations. This suggests a positive aggregate relationship between 

degree assortativity and invention quantity. 

In sum, due to the efficiency of similar-rank collaborations in sharing knowledge and 

resources, and the disproportionate ability of C-C collaborations to produce patentable 

inventions, we expect:  
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Hypothesis 1 (H1): An increase in the degree assortativity of a firm’s intra-firm 

network is associated with an increase in the quantity of its inventive output. 

Degree Assortativity and Novelty of Inventions 

At the same time, we expect degree assortativity to be negatively correlated with the novelty of 

the inventions produced. Novel inventions often require distant search among diverse knowledge 

components frequently found in other fields or the fringes (e.g., Cattani & Ferriani, 2008; 

Fleming, 2001; Hargadon, 2003; Uzzi et al., 2013). Distant search is often conducted through 

collaborations with inventors who possess nonredundant knowledge (Kogut & Zander, 1992; 

Singh & Fleming, 2010). Assortative structures, while increasing the efficiency with which 

knowledge is shared and inventions are produced, may limit the ability of inventors to perform 

distant search and make original discoveries. The knowledge required for combining distant 

components may reside in different parts of the firm (Ethiraj & Levinthal, 2004; Hargadon & 

Sutton, 1997). The fragmentation typical of assortative structures may limit the knowledge flow 

required for such combinations. Highly assortative structures in which collaborations are 

characterized by degree similarity may not be conducive to distant search. 

In our stylized depiction of highly assortative structures, C-C collaborations may 

especially be inclined toward local search. While central inventors have more collaborative 

relationships and wider access to knowledge sources in the firm, they are less likely to have 

access to fresh and localized knowledge components often found in the periphery (Cummings & 

Cross, 2003; Everett & Borgatti, 1999; McEvily, Soda, & Tortoriello, 2014). Search in these 

collaborations is more likely to get trapped in familiar technological areas and neighborhood of 

known solutions, relying heavily on what has worked before (Ahuja & Lampert, 2001; Hargadon 

& Sutton, 1997). They are less likely to lead to surprising and creative insights that can only be 
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achieved through unusual combinations of knowledge (Cattani & Ferriani, 2008). P-P 

collaborations, on the other hand, may have lower knowledge overlap and more divergent 

perspectives, to the extent they come from different knowledge spheres. While they may have a 

higher potential to generate unusual combinations of distant knowledge, they are unlikely to 

bring highly novel work to fruition, given their challenges in securing organizational resources 

(Gulati, Nohria, & Zaheer, 2000; Nerkar & Paruchuri, 2005).  

In contrast, in firms with low assortativity, inventors may be able to overcome these 

shortcomings by leveraging complementarities (Ahuja et al., 2012). Mixed-rank collaborations 

may lead to novel inventions by combining the expertise and resources of central inventors with 

new knowledge and fresh ideas from peripheral inventors. These collaborations may experiment 

more with new knowledge, generating and supporting more diverse sets of insights (Ahuja & 

Lampert, 2001; Amabile, 1988; Hargadon & Sutton, 1997). This is consistent with the findings 

that balanced teams comprised of core and periphery members generate more creative outcomes 

(Cattani & Ferriani, 2008; Guimera et al., 2005), and integrated network structures exhibit more 

effective knowledge combination and reuse (Carnabuci & Operti, 2013).  

Assortativity of intra-firm networks may generate organizational externalities beyond the 

nodal and dyadic characteristics of each collaboration. Mixed-rank collaborations in highly 

assortative networks are not only smaller in number but may also be less effective in generating 

novelty due to the overall climate of collaboration. Norms of collaboration in highly assortative 

networks may hamper the success of the few mixed-rank collaborations that are in existence 

(Bunderson & Reagans, 2011; Perry-Smith & Mannucci, 2017). If similar-rank collaborations 

are more typical in a firm, mixed-rank collaborations may be beset by the unwillingness of 

peripheral members to share ideas or voice their opinions, and of the central members to listen to 
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them (Bunderson & Reagans, 2011; Tzabbar & Vestal, 2015). In other words, a mixed-rank 

collaboration in an assortative network may not lead to knowledge exchange as effectively as a 

similar collaboration in a disassortative network. Therefore, we expect a higher rate of novel 

inventions in less assortative structures due to the prevalence and overall effectiveness of mixed-

rank collaborations in leveraging complementarities.  

Hypothesis 2 (H2): An increase in the degree assortativity of a firm’s intra-firm 

network is associated with a decrease in the average novelty of inventive output. 

Degree Assortativity and Invention Impact 

Inventions generated in less assortative networks are not only more likely to be novel, but they 

may also be more impactful, since novelty and scientific impact often go hand in hand 2. 

Technological inventions that combine diverse sources of knowledge that have rarely been 

combined in earlier work are more likely to have higher impact on subsequent research (e.g., 

Ahuja & Lampert, 2001; Amabile, 1988; Kneeland, Schilling, & Aharonson, 2020; Rosenkopf & 

Nerkar, 2001). While not all novel inventions are highly impactful (Amabile, 1983), novelty 

increases the likelihood that an invention will have higher impact on later work (Ahuja & 

Lampert, 2001). The early uses and recombinations of a knowledge component challenge 

inventors and their ways of thinking, resulting in fresh perspectives that others gradually build on 

(Ahuja & Lampert, 2001; Fleming, 2001). Over time, repeated use of the same knowledge 

components depletes the technological usefulness of the knowledge, a phenomenon known as 

technological exhaustion (Fleming, 2001). Recent research suggests that ideas with the highest 

impact are those that combine extremely new knowledge elements with conventional ones (Uzzi 

 
2 While the link between invention novelty and impact has been extensively studied, other characteristics of 
inventions, such as originality or generality, may also be correlated with their impact on subsequent research. We 
explore these alternative pathways in supplementary analyses. 
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et al., 2013). Conventionality reflects the deep foundational knowledge required to comprehend 

and meaningfully contribute to problems in an established research domain, while fresh 

knowledge components are instrumental in finding superior solutions to those problems (Kaplan 

& Vakili, 2015). Collaborations that allow inventors to generate such combinations are, 

therefore, more likely to lead to scientific impact.  

Since the mixed-rank collaborations found in less assortative structures can combine 

novel insights from the periphery with the deep expertise of the core, such structures may be 

more conducive to impactful inventions. As detailed in prior sections, mixed-rank collaborations 

not only are likely to generate ideas that incorporate more novel knowledge elements, but they 

are also more likely to be able to bring these ideas to fruition by mobilizing organizational 

resources. Less assortative structures will facilitate the permeation of new ideas and knowledge 

into firms’ existing repertoires of knowledge, and firms are more likely to discover impactful 

solutions to problems. The heterogeneity in the ways in which inventor teams can solve 

problems will enable them to identify superior solutions that may otherwise go unobserved, 

increasing overall impact. In contrast, inventive output in assortative structures may drift toward 

conventionality and result in incremental improvements with lower average impact. Therefore, 

Hypothesis 3 (H3): An increase in the degree assortativity of a firm’s intra-firm 

network is associated with a decrease in the average impact of inventive output. 

DATA AND METHODS 

We test our hypotheses in the context of collaboration networks in the pharmaceutical industry. 

Innovation and technological development are critical to the success of pharmaceutical firms 

(Jaffe, 1986; Cockburn & Griliches, 1988). Patented inventions represent 80% of the innovations 

in the industry as compared to an average of 35% in other industries (Arundel & Kabla, 1998). 
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Collaboration networks in drug discovery provide an appealing proxy for knowledge transfer 

within firms, as each invention effort is long-term and requires intense knowledge exchange and 

joint problem solving (Argyres & Silverman, 2004; Hansen, 1999; Paruchuri, 2010). Patent 

records also provide a rare opportunity to empirically examine the collaboration networks of 

firms within the same industry over time and the associated inventions.  

 We obtained patent data from The United States Patent and Trademark Office (USPTO) 

to construct collaboration networks. We identified all patents in the pharmaceutical industry 

through USPTO classes 514 and 424 (Khanna, Guler, & Nerkar, 2018). Since we examine 

informal structure through a firm’s patents, we excluded firms that did not patent consecutively 

for ten years. After accounting for missing values, the final sample contains 95 firms between 

1985 and 1999, leading to a panel of 1,425 firm-year observations. We restricted the sample 

period to 1999 to allow patents enough time to accumulate forward citations, reducing the 

concern for right censoring. In addition, the time period is especially suited to capturing 

inventive activity through USPTO patenting records. Carley, Hegde & Marco (2015) report that 

USPTO approval rates of patent applications were around 80% before 2000 and have steadily 

declined since. This suggests that potential concern about unobserved inventive activity due to 

patent rejections is minimal in our dataset. 

Dependent variables 

The first dependent variable is the quantity of inventive output, measured as the total number of 

patents a firm produced in a year (e.g., Ahuja, 2000; Rothaermel & Thursby, 2007). The second 

dependent variable is the novelty of the inventive output, measured using the USPTO-assigned 

subclasses that the patent combines. Technological subclasses represent “very fine divisions of 

technology” (Fleming, 2001: 122) and reliably represent the knowledge components underlying 
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a patented invention. Consider as an example patent 6,166,092, which contains knowledge on the 

derivation of perfluorocarbon from common organic compounds (subclass 772, ‘compositions 

containing nonbioactive organic compound’) by replacing carbon-bound hydrogen atoms with 

fluorine atoms (subclass 653, ‘hydroxy attached to the acyclic carbon or chain by acyclic 

nonionic bonding’). The resulting composition is in emulsion form (subclass 937, ‘composition 

in the form of a dispersion or emulsion’) and used to deliver drugs to the lungs of patients. As 

illustrated in this example, the subclasses assigned to patents by the USPTO represent basic 

building blocks that constitute inventions and meaningfully differ from each other in terms of 

their scientific functions.  

The approach to measure the novelty of inventive output has multiple stages. First, we 

estimated the familiarity of a subclass using the approach described in Fleming (2001). The 

measure of familiarity aims to capture 1) the extent to which the subclass was combined with 

other subclasses in prior patents and 2) the recency of these patents. The idea is that if the focal 

subclass is combined with several other subclasses in recent patents, inventors are more familiar 

with the focal subclass. Formally, familiarity of patent !’s subclass " is:  

#!"  = ∑ 1	{(!)*+)	,	-.*.	.-,/0!..	"}!##	%!&'(&)	*	+,!(&'-
*'./,'	%!&'(&	!

 

                                           ´  *0(
!""#$%!&$'(	*!&+	',	"!&+(&	!-!""#$%!&$'(	*!&+	',	"!&+(&	.

&$/+	%'(0&!(&	',	1('2#+*3+	.!0+ )																											(1) 

Following Fleming (2001), we used the time constant of a knowledge base as five years to reflect 

18% knowledge decay per year. We subtracted the measure of familiarity of each subclass from 

one to measure novelty. We calculated Nai, the novelty of patent a’s subclass i, as follows:  

4!" = 1 − #!" 																																																																																																																																															(2) 

The novelty of a patent increases with the novelty of the subclasses on the patent. The novelty of 

patent !, Na, was measured as: 
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  4! =
∑ 4!$	!##	04.%#!00+0	$	',	"!&+(&	!	
∑ 5	!##	04.%#!00+0	$	',	"!&+(&	!	

																																																																																																													(3)         

Finally, we took the average of the novelty values of all patents granted to a firm in the focal 

year to compute our dependent variable, novelty of inventive output, at the firm level.  

The final dependent variable is the impact of inventive output, measured as the average 

number of forward citations to a firm’s patents (e.g., Pavitt, 1988; Trajtenberg, 1990). At the 

firm-year level, we calculated the number of forward citations received by a firm’s patents 

granted in a given year, normalized using the total number of patents granted in that year.  

Independent variable 

The independent variable is the degree assortativity of an intra-firm network. In constructing 

intra-firm networks, we only considered patent co-authorship ties between inventors employed in 

each firm and excluded the collaborations that occurred outside the firm boundaries (Fleming, 

King, & Juda, 2007; Nerkar & Paruchuri, 2005). To compute degree assortativity, we measured 

the extent to which similar nodes are connected with each other (Newman, 2003). Formally, let 

us consider two nodes of types 9 and :. In a perfectly assortative network, the probability exy that 

an edge joins nodes of types x and y would be 0, i.e., 

*67 = (;<,!,"0"):	)ℎ!)	!+	*>?*	0"+@.	+<>*	<A	):(*	9	B")ℎ	!	+<>*	<A	):(*	: = 0												(4) 

On the other extreme, in a perfectly disassortative structure, *67 would be equal to 1 as no two 

nodes that are connected in the network are of the same type. In an undirected network, *67 is 

symmetric and satisfies the sum rule: 

*67 =	*76; 																				F*67 =
7

!6; 															F*67 =
6

,7																																					(5) 

For the values in between, degree assortativity of a network, ;, is estimated using the Pearson 

correlation coefficient: 
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; = 	
∑ *666 −	∑ !6,66
1 − ∑ !6,66

																																																																																					(6) 

where e is the matrix with elements containing all possible values of *67, Tr	(e) is the trace of 

matrix e, i.e., the sum of elements in the diagonal, and ‖e8‖ is the sum of all elements in the 

matrix *8.	In equation (6), the value of ; is 0 when mixing is random, as in this case *67 =

	!6,7. In case of perfect assortativity, ;	 = 	1 and *67 = 1. When the network is perfectly 

disassortative, ;	 = 	−1 and *66 = 0 because no two connected nodes have the same degree 

centrality. Thus, the value of ; ranges between -1 and 1 with negative values representing 

disassortative structures and positive values indicating assortative structures. 

At this point, it may be helpful to demonstrate the concept of degree assortativity with 

two intra-firm networks in our sample. Figures 2a and 2b represent the topology and degree 

distribution of intra-firm networks of Roche and Eli Lilly respectively in 1985, and Figures 3a 

and 3b show their respective degree correlations. As shown in Figure 2a, the degree distribution 

of Roche indicates a negative slope between the degree centrality of nodes and the frequency of 

nodes with identical degree ranks, which is characteristic of most social networks as there are 

fewer nodes with high degrees (lower rank) and more nodes with low degrees (higher rank). The 

topology of the network indicates a low level of degree assortativity, as peripheral nodes connect 

with central nodes in Figure 2a. To further assess the level of assortativity in this network, we 

plotted the degree correlation of nodes in the Roche network (Figure 3a). Degree correlation 

plots show the relationship between the degree centrality of a focal node and the average degree 

centrality of nodes that are connected to that node. Figure 3a indicates that the degree correlation 

is positive, suggesting assortativity in the Roche intra-firm network, but the shallow slope 

supports our earlier observation that assortativity is low. Based on the methodology described 

above (Newman, 2003), the assortativity of the Roche intra-firm network is 0.11.  
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We observe in Figure 2b that Eli Lilly’s degree distribution also has a negative slope, and 

the topology of Eli Lilly’s intra-firm network also suggests a tendency of nodes with similar 

degree centralities to connect with each other. We plot the degree correlation for Eli Lilly’s intra-

firm network in Figure 3b. The slope for the relationship between the degree centrality of a node 

and average degree centrality of its neighbors is positive and steeper than the slope for Roche, 

which suggests that the intra-firm network of Eli Lilly is more assortative than that of Roche. 

The degree assortativity of Eli Lilly’s intra-firm network is 0.56. This suggests that inventors of 

similar degree centralities tend to collaborate more with each other in Eli Lilly than in Roche, 

whereas collaborative ties between peripheral and central inventors are more prevalent in Roche 

than in Eli Lilly.  

------------------------- Insert Figures 2a, 2b, 3a, and 3b here ------------------------- 
 

Control variables 

We controlled for several potential confounders in our empirical model. First, we controlled for 

the alliances of each firm since external sources of knowledge can influence a firm’s invention 

performance (Ahuja, 2000; Ahuja & Katila, 2001). Next, we controlled for geographical 

diversity, which may affect innovation by increasing the availability of resources and capabilities 

for innovation (Kobrin, 1991). Thus, we included the number of countries in which a firm 

patents in a given year. A firm’s experience with failures in R&D can also influence its 

subsequent invention performance (Khanna, Guler, & Nerkar, 2016). We therefore controlled for 

the number of failed attempts at innovations using voluntary discontinuations of patents each 

year. We also controlled for the number of lawsuits against each firm based on the Lexis-Nexis 

Legal Research database, since this may be correlated with firms’ patenting strategies and 

outcomes. Next, we controlled for the number of claims normalized by the number of patents 
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assigned to each firm, as these indicate the scope of the contributions and the future value of a 

firm’s patents (Lanjouw & Schankeman, 2004). The commercial success of a firm in a 

technological area may influence collaborations as well as subsequent technological trajectory. 

Thus, we controlled for the number of patent-protected drugs that each firm has on the market in 

a given year. We also controlled for the number of new inventors joining a firm (based on 

patenting activity) each year, because it can disrupt collaboration between inventors as well as 

influence innovation outcomes (Carnabuci & Operti, 2013). 

In addition, we controlled for several whole-network properties that may be correlated 

with assortativity and firms’ invention outcomes (Ahuja et al., 2012). First, we controlled for 

network density (Reagans & McEvily, 2003), calculated as the ratio of the actual number of ties 

to the total number of potential ties in a firm’s intra-firm network. Another property of whole 

networks that can impact creativity and invention is connectivity (Schilling, 2005; Schilling & 

Phelps, 2007), an indication of how quickly knowledge can spread between any two nodes. We 

calculated this as the average of path lengths between all pairs of inventors within a network. 

Next, we controlled for the clustering coefficient of intra-firm networks (Newman, 2001), or the 

average of densities of ego networks of all inventors in the firm, which reflects benefits such as 

trust and shared beliefs that facilitate a smooth transfer of knowledge among inventors (e.g., 

Fleming et al., 2007). We controlled for centralization, calculated as the ratio of the sum of the 

differences in the centralities of nodes in a network to the maximum sum of differences in 

centralities and varies between zero and one (Freeman, 1978). We also controlled for the average 

centrality of inventors in the intra-firm network to consider the benefits of inventor positions for 

firms’ invention performance (Paruchuri, 2010). We measured average centrality in the (1) 

collaboration network of inventors, (2) citation networks within the firm. Since inventors’ 
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external (industry-wide) collaborations may also impact the firm’s invention outcomes, we 

controlled for the average centrality of inventors in the external (industry-wide) collaboration 

and citation networks. To generate the citation networks, we considered two inventors to have a 

tie if one inventor cites a patent of the other in a given year. All control variables were measured 

using three-year moving averages to smooth out sharp changes and control for lasting effects.  

Estimation procedure 

It is possible that firms with a high level of degree assortativity differ systematically from firms 

with low degree assortativity. This could lead to biased estimates of regression coefficients and 

render them causally uninterpretable. While it is not possible to completely rule out this issue, 

one way to partially address it is to match firms with high assortativity (treated) and those with 

low assortativity (control) on observable characteristics. The procedure results in a more 

balanced sample and makes a comparison between the two groups more meaningful.  

We used Coarsened Exact Matching (CEM) procedure to obtain covariate balance 

between the treatment and control sets (Iacus, King, & Porro, 2011). CEM is superior to other 

matching methods as it uses the information in the data more efficiently and reduces model 

dependence (Iacus et al., 2011). Since the matching procedure requires the treated variable to be 

binary, we created a variable that takes the value of 1 for firms with high assortativity (> 0.5)3 

and 0 for firms with low assortativity (< 0.5). The basic idea behind the matching procedure is 

to compare the outcomes of the treated group with the outcomes of a control group of similar 

observations that could have been treated but were not (Abadie & Imbens, 2002, 2011). For this 

purpose, we constructed the control set by choosing covariates on which the treatment is likely to 

be conditional (Abadie et al., 2004). relied on prior theory to choose four variables that proxy for 

 
3 We chose 0.5 as the cut-off since almost half of the firms in the sample had assortativity above 0.5 and half above 
0.5. We tried different cut-offs (0.45 and 0.55) for sensitivity and results were largely unchanged. 
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the formal structure and individual collaboration choices. The first two matching criteria are the 

size and age of the firm, which may influence the formalization of the structure and, in turn, the 

patterns of collaboration (Burns & Stalker, 1961; Stinchcombe, 1965). We measured firm size as 

the number of inventors within a firm and firm age as the number of years since the firm’s first 

patent. The third matching criterion is the knowledge diversity within each firm, which may 

influence collaboration patterns through the ease of knowledge exchange among inventors 

(Hansen, 1999; Rodan & Galunic, 2004). We measured knowledge diversity using the 

Herfindahl Index of technological subclasses that have appeared in a firm’s patents each year 

(e.g., Gambardella & Torrisi, 1998). Last, we used the number of mergers and acquisitions 

(M&As) that a firm has carried out in the past 10 years, as M&As may change the network 

structure and influence the degree of collaborative integration between inventors within firms 

(Hernandez & Shaver, 2019; Kapoor & Lim, 2007). We repeated the matching process in each 

year to account for changes in matching criteria over time.4 As CEM prunes the unmatched 

observations (almost half in our sample), the final sample includes a firm-year panel of 788 

observations.5 Table A1 in Online Appendix 1 reports the descriptive statistics and tests for 

differences in means for the matching variables in the treatment and control sets before and after 

CEM. The table shows that the procedure meaningfully increases the balance between the sets. 

We ran all models on the balanced dataset by incorporating weights obtained from CEM. In 

addition, our models include robust standard errors clustered at the firm level, a full set of firm 

fixed effects to account for the time-invariant and firm-specific sources of heterogeneity not 

captured by the control variables, and year fixed effects.  

 
4 We obtained characteristically similar results when we performed the matching once, at the beginning of the study 
period (1985) (available upon request). 
5 Analyses with the larger pre-CEM sample yield similar results, available on request. 
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The first dependent variable is the quantity of inventions, or the number of patents 

granted to firms each year. Because of the count nature of this variable, we used a fixed-effects 

Poisson estimator (Hausman, Hall, & Griliches,1984). The quasi-maximum likelihood (QML) 

estimator is consistent and has several desirable robustness properties. The second dependent 

variable, novelty of firms’ inventive output, takes values between 0 and 1, and we modeled it 

using the fractional logit method (Papke & Wooldridge, 2008) using generalized linear models 

(glm) command in Stata with a Bernoulli variance and a logit link function (McDowell & Cox, 

2004). The third dependent variable, the number of forward citations at the firm-year level, is a 

continuous variable, and thus we employed an OLS model.  

RESULTS 

Table 2 presents the descriptive statistics and correlation matrix for the variables used in the 

analysis. The correlations between independent variables are 0.53 or below, and the average 

variation inflation factor (VIF) statistic of 3.5 is also below the accepted cutoff of 10, reducing 

concerns for multicollinearity. Degree assortativity is correlated with the other dimensions of 

intra-firm network structure at 0.3 or below, supporting our expectation that it is a distinct 

dimension of structure not captured by those dimensions. 

 -------------- Insert Tables 2 and 3 here --------------- 

 Table 3 reports the results for H1-H3 with models incorporating weights obtained from 

CEM as well as firm and year fixed effects. Model 1 in Table 3 tests the relationship between 

assortativity and the quantity of inventive output (H1). The coefficient of assortativity is 0.360 at 

a p-value of 0.000. To examine effect sizes, we compare firms with high assortativity (at one 

standard deviation above the mean) with those at mean levels of assortativity. Firms with high 

assortativity generate 4.8% P= *9((9.;<9∗9.5;) − 1Q higher quantity of inventive output than 
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those with average assortativity, consistent with H1. Model 2 in Table 3 tests H2 that degree 

assortativity is negatively associated with the novelty of inventive output. The coefficient of 

assortativity is -0.558 at a p-value of 0.000. Since we used the logit link with the binomial family 

in the GLM specification, the coefficients can be interpreted as in a count model. Firms with 

high assortativity are 7% lower in novelty of inventive output than those with average 

assortativity. The result is consistent with H2. Model 3 reports the result for H3, which predicted 

a negative association between assortativity and impact of inventive output. The coefficient of 

assortativity in Model 3 is -3.519 at a p-value of 0.000, consistent with H3. The result indicates 

that the average impact of inventive output in firms with high assortativity is 0.46-units lower 

than that in firms with average degree assortativity. The mean impact of inventive output for 

firms in our sample is 5.32, and this corresponds to an 8.6% lower impact.  

SUPPLEMENTARY ANALYSES 

We conducted several supplementary analyses to further investigate the relationships proposed in 

the study. These analyses are explained in detail in Online Appendix 2, and a summary is 

available in Table 4. Some of the main findings from the supplementary analyses are as follows: 

(1) We were able to validate our assumptions about peripheral inventors’ access to new 

knowledge and central members’ relative productivity by comparing the mean novelty and 

quantity values for C-C, C-P and P-P collaborations. Mean novelty of inventive output from C-P 

collaborations is higher (0.48) than that from C-C (0.38) and P-P (0.37) collaborations. C-C 

collaborations produce more patents on average (5.9) than C-P (4.3) and P-P (3.7) collaborations. 

(2) We also tested whether C-P collaborations resulted in higher novelty when they reside in a 

firm with low assortativity than in a firm with high assortativity, as argued, and found this to be 

the case. The t-value for the difference in mean novelty between low and high assortativity 
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(bottom and top 25%) firms is 7.77 with a p-value of 0.000. (3) Since our theory suggested that 

the relationship between assortativity and invention quantity was mainly due to search activity, 

we tested whether novelty of inventions mediated the relationship between assortativity and 

quantity of inventions. Similarly, since we theorized that the relationship between assortativity 

and invention impact was primarily due to the novelty, we also tested whether invention novelty 

mediated the relationship between assortativity and average impact. We did indeed find that 

novelty partially mediated both relationships. Casual mediation analyses (Elmsley & Liu, 2013) 

suggested that novelty of inventive output mediated 23.9% of the relationship between 

assortativity and quantity of inventive output, and that novelty mediated 29.6% of the 

relationship between assortativity and impact. (4) We used alternative measures of novelty 

(based on past knowledge use) as well as alternative measures of impact (based on the number of 

breakthrough inventions and dispersion of the number of citations). The results were similar 

when we used alternative measures of novelty based on past knowledge use rather than 

technological subclasses, consistent with the idea that assortativity is related to search. In 

addition, we found that firms with low assortativity had more breakthrough patents and higher 

dispersion in terms of invention impact. (5) We examined the relationship between assortativity 

and patent originality and generality (Hall, Jaffe, & Trajtenberg, 2001). Assortativity was 

associated with low originality but high generality. While the results are exploratory, it is 

interesting that assortativity may be associated with more general technologies. (6) We tested the 

possibility that the results were fully explained by the distribution of knowledge among a firm’s 

inventors, which might make assortativity redundant as an explanator of invention outcomes. 

Both the inclusion of knowledge diversity as a matching criterion in the CEM analysis and the 

addition of an alternative knowledge distribution measure over inventors (Teachman, 1980; 
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Carnabuci & Operti, 2013) suggested that the results are not fully explained by knowledge 

distribution. (7) We found robust results using an alternative matching estimator (nearest-

neighbor matching) and additional matching criteria.  

----------------------------- Insert Table 4 here ----------------------------- 

DISCUSSION AND CONCLUSION 

The study generated several insights. Controlling for other attributes of intra-firm 

networks and a wide variety of firm characteristics, we found that degree assortativity of intra-

firm networks was associated with higher inventive output but with lower average novelty and 

impact. Supplementary analyses suggested that the impact of degree assortativity on both 

outcomes is partially mediated by the novelty of the inventive output, consistent with the 

expectation that collaborations in assortative structures are more efficient but produce less novel 

outcomes. Moreover, they provided further evidence that disassortative structures were 

associated with more distant search and a higher likelihood of breakthrough inventions. 

The findings from the paper underscore the critical role of the structure of intra-firm 

networks on a firm’s invention performance (e.g., Carnabuci & Operti 2013; Guler & Nerkar, 

2012; Moreira et al., 2018). We add to that literature by demonstrating that degree assortativity, 

an often-overlooked property of firms’ intra-firm networks, influences overall invention 

performance in nuanced ways. While assortative matching has often been accepted as a general 

principle of tie formation, our study is the first to document variation in the levels of degree 

assortativity in different firms, as well as meaningful associations between levels of degree 

assortativity and firm-level inventive outcomes. In addition, in contrast with prior work that has 

focused on knowledge transfer as the main mechanism linking intra-firm network structures and 

inventive outcomes (Davis & Aggarwal, 2020), our findings highlight that knowledge transfer 
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only partially explains the assortativity-invention link. We conclude that differences in 

assortativity also capture variations in resource mobilization around ideas. As such, degree 

assortativity has implications not only for the search for new ideas through knowledge 

recombination but also for the selection of ideas through access to organizational resources.  

Broadly, our study joins a recent conversation linking intra-firm interactions of 

individuals to firm-level knowledge outcomes (e.g., Davis & Aggarwal, 2020). Starting with the 

premise that knowledge creation is subject to individual, team and organizational-level factors, 

this body of work develops an emerging understanding of microfoundations based on articulating 

how patterns of interactions between individuals yield macro-level outcomes (Aggarwal, Posen 

& Workiewicz, 2020; Bhaskarabhatla et al., 2021). By simultaneously considering the 

consequences of individual inventor characteristics and their collaboration patterns in 

recombinant innovation, assortativity promises to extend our understanding of how individual 

inventors come to influence innovation outcomes within firms.  

The insights in the paper are useful in considering how organizational design through 

team composition may help firms achieve invention outcomes. A firm focusing on invention 

productivity may promote more assortativity in its intra-firm network, whereas another aiming at 

novel solutions may prefer lower assortativity. This application, however, raises a key question: 

To what extent can managers alter the level of degree assortativity in their firms to influence 

invention outcomes? On the one hand, intra-firm networks of collaboration are emergent and 

evolve over time (McEvily et al., 2014). Inventors’ decisions to work with each other is 

voluntary and depends on their research interests (e.g., Fleming et al., 2007; Liebeskind et al., 

1996). At the same time, recent work suggests that firms may be able to influence informal 

structures by providing the environment and incentives for certain types of connections (e.g., 
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Kleinbaum, Stuart, & Tushman, 2013; Puranam, 2018). The issue of how managers can nudge 

intra-firm networks toward preferred patterns is one that requires more research. 

The paper raises interesting questions for strategic human capital (Agarwal, Ganco, & 

Ziedonis, 2009; Ganco, 2013; Khanna, 2021a). Scholars have examined the consequences of star 

mobility for firms and individuals (Azoulay et al., 2019; Groysberg & Lee, 2009; Khanna, 

2021b; Oldroyd & Morris, 2012). An implication of this study is that the impact of the departure 

of a star inventor on inventive outcomes may vary with the level of assortativity in a firm’s 

collaboration network. Furthermore, assortativity may have implications for the arrival, 

integration and productivity of new star inventors. We invite future work on these relationships. 

 This study focuses on a specific type of assortativity based on centrality in the 

organizational network (Newman, 2002, 2003; Newman & Park, 2003). Assortative mixing can 

be based on other characteristics, such as technological expertise, educational background, 

gender or other demographic traits (e.g., Becker, 1973; Bhaskarabhatla et al., 2021). We argued 

that the process of tie formation based on the logic of degree assortativity could result in non-

trivial structural changes in collaboration networks and explain heterogeneity in the performance 

of firms within an industry. Other dimensions of assortativity may be equally important in 

explaining collaboration and innovation patterns; furthermore, they may vary in the extent to 

which they present accurate performance cues, influence collaboration dynamics and shape 

resource allocation. The paper invites further work examining various types of assortativity.  

The findings of the study likely apply to a broad range of contexts where innovations are 

generated through collaborative and iterative processes of recombinant search and selection. 

However, in contexts where innovation is generated through other processes such as 

improvisation, knowledge access and resource mobilization may not be as critical to output. 
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Moreover, the implications of assortativity for other aspects of innovation performance is an 

open question. Even though we can reasonably assume that novel and impactful inventions are 

more likely to be commercialized, we do not know the extent to which they actually are. There 

could be further associations between assortativity and invention development and 

commercialization, as resource mobilization mechanisms gain more importance in those phases. 

Future work that considers measures of innovation of commercialization performance can further 

establish the role of the informal structure in firms’ innovation performance.  

It is important to underscore that the results of the study are correlational and provide 

suggestive evidence for a relationship between assortativity of collaboration networks and 

invention outcomes. The earlier discussion highlights that assortativity is not exogenously 

determined nor randomly distributed but likely influenced by other individual and organizational 

factors. Even so, the evidence of a correlational relationship between assortativity and innovation 

contributes towards a better understanding of the process by which structures of collaboration 

shape invention outcomes within firms and become a potential source of competitive advantage. 

Overall, research in strategic management has long focused on the heterogeneity in 

performance across firms (Helfat, 2000). One of the ways firms can gain a competitive 

advantage, especially in high-technology industries, is through innovation (Helfat & Peteraf, 

2003; Rosenkopf & Nerkar, 2001). Recent work has made headways into understanding the 

sources of heterogeneous innovation performance at multiple levels of analysis (Davis and 

Aggarwal, 2020; Aggarwal, Posen & Workiewicz, 2020). By providing evidence on the 

relationship between informal structure and invention performance, the current study contributes 

to our understanding of the factors underlying firm-level heterogeneity in innovation capabilities.   
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TABLES 

Table 1. Degree assortativity and related network concepts at nodal, dyadic and whole network levels 

Level of 
analysis 

Network 
concepts 

Examples of relevant 
work Impact on knowledge access Impact on resource 

mobilization Implications for invention 

Nodal level Centrality 

Everett & Borgatti, 
1999; Hansen, 2002; 

Ibarra, 1993; Nerkar & 
Paruchuri, 2005; 

Tzabbar & Kehoe 2014; 
Tsai, 2001 

Central inventors have greater 
access to knowledge, but their 
knowledge heavily reflects the 

prevailing norms and assumptions 
of the firm. Less central inventors 

have more limited access, but 
their knowledge sources may be 

more varied. 

Central inventors can more 
easily mobilize organizational 

resources (funding, support) for 
their ideas. Less central 

inventors have difficulty in 
mobilizing organizational 
resource due to a lack of 

connections. 

Central inventors are 
disproportionately more 

productive, but they engage in 
more local search and their 

work may have limited 
novelty. Less central inventors 
may have novel ideas but lack 
organizational support to carry 

them out. 

Dyadic level 
Structural 
homophily 

Ahuja et al. 2009; 
Ibarra et al. 2005;  

McPherson et al. 2001; 
Shipilov et al. 2011 

Homophilous collaborations 
achieve more fluid knowledge 

transfer due to ease of 
communication and trust but they 
have access to lower diversity of 
knowledge due to overlapping 

knowledge bases 

Heterophilous collaborations 
may better realize novel 
inventions compared to 

homophilous ones if they can 
complement fresh knowledge 

with resource mobilization 
advantages from diverse 

members.  

Structural homophily 
increases efficiency in 

collaborations, leading to high 
invention quantity but limits 

access to complementary 
knowledge and resources, 

lowering novelty and impact. 

Whole 
network level 

Degree 
Assortativity 

Ahuja et al., 2012; 
Borgatti & Everett 
2000; Cattani & 

Ferriani 2012; Fang, 
Lee & Schilling 2010 

Fragmentation suggests rich 
information and resource flows 

within clusters of central (or 
peripheral) actors but limited 

flows between them. Firm-wide 
norms of collaboration may 
influence effectiveness of 

knowledge sharing.  

In assortative structures, 
organizational resources at the 
core may not be mobilized to 

execute the novel ideas in 
periphery. Disassortative 

structures more effectively 
achieve mobilization of 

organizational resources for 
novel inventions. 

Efficient communication and 
resource mobilization within 
core and periphery clusters in 
assortative networks promote 
quantity, but lack of 
knowledge and resource flows 
across clusters leads to lower 
novelty and impact.  
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Table 2: Descriptive Statistics and Partial Correlation Matrix 

Variable Mean s. d. 1 2 3 4 5 6 7 8 9 10 11 12 13 

1 Quantity of inventive output 45 28 1             

2 Novelty of inventive output 0.42 0.12 -0.06 1            

3 Impact of inventive output 5.32 6.91 -0.02 0.27 1           

4 Degree assortativity 0.19 0.13 0.17 -0.21 -0.13 1          

5 Number of alliances 2.79 5.09 -0.26 0.36 0.13 -0.22 1         

6 Geographic diversification 3.76 0.21 0.31 0.41 0.49 -0.32 -0.37 1        

7 Number of claims per patent 13.58 4.29 0.05 0.04 0.02 0.09 0.28 -0.07 1       

8 Density 0.05 0.07 -0.05 -0.07 -0.04 -0.21 -0.06 -0.07 -0.17 1      

9 Connectivity 5.28 6.37 0.13 -0.32 -0.15 0.07 0.04 -0.18 -0.25 0.34 1     

10 Clustering 0.73 0.08 0.41 0.19 0.29 -0.22 -0.19 -0.05 0.07 0.29 0.01 1    

11 Average centrality (internal collaboration network) 0.31 0.58 0.04 -0.01 0.04 -0.09 0.40 0.28 -0.08 0.14 0.08 0.01 1   

12 Average centrality (internal citation network) 0.15 0.27 -0.11 0.06 -0.05 0.30 0.39 0.29 -0.08 -0.06 -0.08 0.31 0.47 1  

13 Average centrality (external collaboration network) 0.06 0.03 0.01 0.11 0.01 0.02 0.08 -0.05 -0.07 0.11 -0.16 0.28 0.18 -0.31 1 

14 Average centrality (external citation network) 0.13 0.22 0.23 0.16 0.28 0.09 -0.06 -0.31 -0.11 0.25 -0.50 -0.05 0.07 -0.36 0.09 

15 Number of failed attempts 51 83 0.07 -0.19 0.10 0.12 -0.07 -0.25 0.05 0.17 0.34 0.07 -0.30 -0.38 0.11 

16 Number of lawsuits 4.58 8.12 0.02 0.03 0.01 0.11 0.17 -0.20 0.26 0.09 -0.03 0.05 0.11 -0.19 0.01 

17 Network centralization 0.09 0.14 0.32 0.22 0.38 0.12 -0.09 -0.28 -0.11 0.15 -0.49 -0.08 0.08 -0.55 0.09 

18 Number of drugs 2.4 4.3 0.04 0.32 0.07 -0.03 0.07 0.13 0.22 -0.05 0.17 0.08 -0.14 -0.19 0.22 

19 Number of newcomers 0.05 0.23 -0.09 0.39 0.11 0.13 0.16 0.10 0.05 -0.03 0.08 0.16 0.11 -0.14 -0.21 

Variable 14 15 16 17 18 19   

14 Average centrality (external citation network) 1        

15 Number of failed attempts -0.08 1       

16 Number of lawsuits -0.08 0.29 1      

17 Network centralization 0.24 0.29 0.17 1     

18 Number of drugs 0.18 0.13 -0.09 0.06 1    

19 Number of newcomers 0.06 0.39 0.21 -0.07 -0.19 1   
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Table 3: Fixed-Effects Models for Invention Outcomes  

Variable 
(1) 

QML Poisson 
(DV: Quantity of 
inventive output) 

(2)  
GLM 

(DV: Novelty of 
inventive output) 

(3) 
OLS 

DV: (Impact of 
inventive output) 

Degree assortativity i, t-1 0.360  0.000  -0.558  0.000   -3.519  0.000   
 (0.050)  (0.002)  (0.228)  
Number of alliances i, t-3-t-1 -0.011  0.077  0.049  0.000   0.085  0.065  
 (0.006)  (0.001)  (0.046)  
Geographic diversification i, t-3-t-1 0.015  0.321  0.002  0.030  0.467  0.000   
 (0.015)  (0.001)  (0.031)  
Number of claims per patent i, t-3-t-1 -0.030  0.526  0.121  0.000  0.033  0.000  
 (0.048)  (0.015)  (0.007)  
Density i, t-3-t-1  0.024  0.000  -0.058  0.000  -0.017  0.000  
 (0.006)  (0.016)  (0.002)  
Connectivity i, t-3-t-1 0.018  0.000    -0.003  0.604  -0.208  0.507  
 (0.001)  (0.006)  (0.313)  
Clustering i, t-3-t-1 0.010  0.000 -0.003  0.112  0.123  0.000    
 (0.001)  (0.002)  (0.002)  
Average centrality (internal  0.035  0.146  -0.003  0.000  -0.115  0.176 
collaboration network) i, t-3-t-1 (0.024)  (0.001)  (0.085)  
Average centrality (internal citation  0.002  0.505  -0.018  0.746  0.011  0.676  
network) i, t-3-t-1 (0.003)  (0.056)  (0.026)  
Average centrality (external  -0.015  0.000  0.004  0.056 0.040  0.057 
collaboration network) i, t-3-t-1 (0.003)  (0.002)  (0.021)  
Average centrality (external citation  -0.003  0.339  0.000  0.412 -0.018  0.199  
network) i, t-3-t-1 (0.003)  (0.000)  (0.014)  
Number of failed attempts i, t-3-t-1 -0.049  0.000  0.055  0.000  0.044  0.000  
 (0.014)  (0.015)  (0.011)  
Number of lawsuits i, t-3-t-1 -0.011  0.780  0.055  0.037  0.108  0.691  
 (0.039)  (0.026)  (0.272)  
Network centralization i, t-3-t-1 0.043  0.160  -0.036  0.093  0.206  0.114  
 (0.031)  (0.022)  (0.13)  
Number of drugs i, t-3-t-1 0.292  0.000    0.047  0.038  0.260  0.145  
 (0.032)  (0.023)  (0.179)  
Number of newcomers i, t-3-t-1 -0.834  0.001  0.128  0.118  0.212  0.032  
 (0.243)  (0.082)  (0.099)  
Constant - - 0.898  0.669  11.456  0.007  
 -  (2.100)  (4.219)  
Wald χ2 (χp2) 2,809 (0.000) - - 

F-statistic - - 54 

Log pseudolikelihood - -344 - 

# Observations 788 788 788 

# Groups 86 86 86 

Standard errors in parentheses and p-values in bold. All models incorporate weights from CEM, and firm and year 
fixed effects. Controls-only models are presented in online Appendix 1 (Table A2). 
 



 

 40 
 

Table 4. Summary of supplementary analyses and robustness tests 

Concern  Testing methodology Result  Online 
Appendix 
2 

Tests of assumptions regarding (1) 
peripheral members' access to new 
knowledge, (2) central members' 
productivity 

Comparison of the novelty and quantity of 
inventions produced by C-C, C-P and P-P 
teams  

Mean novelty of inventive output from C-P 
collaborations is higher (0.48) than that from C-
C (0.38) and P-P (0.37) collaborations. C-C 
collaborations produce more patents on average 
(5.9) than C-P (4.3) and P-P (3.7) 
collaborations. 

Tables A3 
and A4   

Test whether the novelty of output from 
mixed rank collaborations by firm 
assortativity. 

Comparison of the mean novelty of C-P team 
inventions in firms with low and high-
assortativity  

The t-value for the difference in mean novelty 
between low and high assortativity (bottom and 
top 25%) firms = 7.77 with a p-value of 0.000 

Table A5  

Does invention novelty mediate the 
relationship between assortativity and 
invention quantity (impact)?  

Baron and Kenney (1986) mediation mode, 
Sobel test (Sobel, 1982), causal mediation 
analysis (Elmsley & Liu, 2013), test of 
average causal mediation effect (Hicks & 
Tingley, 2011).  

Novelty of inventive output mediates 23.9% 
(29.6%) of the relationship between assortativity 
and quantity of inventive output (impact). 

Tables A6 
and A7  

Robustness to alternative measures of 
novelty 

A-novelty measure based on knowledge use 
rather than subclasses; pioneering patents 
with no prior citations. 

Results are robust to alternative measures. Tables A8 
and A9  

Robustness to alternative measures of 
impact 

Number of breakthrough inventions (top 1% 
based on forward citations); standard 
deviation of number of forward citations; 
alternative impact and influence based on 
Correidora & Banerjee (2015) 

Firms with low degree assortativity have more 
breakthrough inventions and higher dispersion 
of citations. Results are robust to the use of 
alternative impact but weaker with the influence 
measure  

Tables 
A10, A11, 
and A12  

Alternative measures of inventive 
output: Patent generality and originality 

Repeat models with alternative dependent 
variable: Average originality and generality 
(Hall et al., 2001) 

Negative association between assortativity and 
originality; positive association between 
assortativity and generality. 

Table A13  

Are the results fully explained by 
knowledge diversity? 

1. Include knowledge diversity as matching 
criterion in CEM; 2. Add alternative 
knowledge diversity measure (Teachman 
1980, Carnabuci & Operti 2013) 

Results are robust, suggesting that knowledge 
diversity only partially explains results 

Table A14  

Are results robust to the choice of 
matching estimator? 

Employ bias-corrected nearest-neighbor 
matching (Abadie & Imbens, 2006; 2011) 

Results are robust. Table A15  

Are results robust to more stringent 
matching criteria? 

Number of newcomers to firm as matching 
variable (Carnabuci & Operti 2013) 

Results are robust. Table A16  
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FIGURES 
 

 

  
Figure 1a 

 
 
 

 
Figure 1b 
Figures 1a and 1b depict two stylized networks with high and low assortativity, 
respectively. For both networks, a node refers to an inventor in a firm, the size of each node 
represents the degree centrality of the inventor, and edges (ties) represent collaborations between 
inventors. The two networks are identical along key network characteristics: network size (=12), 
density (= 0.30), centralization (= 0.29), and average degree centrality (= 3.33). However, degree 
assortativity varies drastically in the two networks. In Figure 1a, nodes with high degree 
centrality have more ties to other central nodes than to nodes with lower centrality, leading to 
high degree assortativity in the network (0.57). In contrast, nodes with high centrality in Figure 
1b are relatively more likely to connect to nodes with low degree centrality, leading to low 
assortativity in the network (-0.64). 

Number of nodes: 12 
Number of edges: 20 
Average degree centrality: 3.33 
Density: 0.30 
Network centralization: 0.29 
Assortativity: -0.64 
 

Number of nodes: 12 
Number of edges: 20 
Average degree centrality: 3.33 
Density: 0.30 
Network centralization: 0.29 
Assortativity: 0.57 
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Figure 2a: Degree distribution and topology of the 
intra-firm network of Roche in 1985 

Figure 2b: Degree distribution and topology of the 
intra-firm network of Eli Lilly in 1985 

  

Figure 3a: Degree correlation plot for the 
intra-firm network of Roche in 1985 Figure 3b: Degree correlation plot for the intra-

firm network of Eli Lilly in 1985 
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Degree assortativity: 0.56 
Number of nodes:248 
Average degree centrality: 
2.74 
Network centralization: 0.073 
Density:0.048 
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Number of nodes:261 
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